Random Number Generation ingretl

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Number Generation 1

Universit e de Montr eal 2 4.1 INTRODUCTION Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0; 1) random variables (i.e., continuous random variables distributed uniformly over the interval (0; 1)). These r...

متن کامل

Random Number Generation

 AI algorithms like genetic algorithms and automated opponents.  Random game content and level generation.  Simulation of complex phenomena such as weather and fire.  Numerical methods such as Monte-Carlo integration.  Until recently primality proving used randomized algorithms.  Cryptography algorithms such as RSA use random numbers for key generation.  Weather simulation and other stat...

متن کامل

On Random Number Generation

Introduction Random numbers play a large and significant role in several fields and applications from cryptography to gaming to gambling. As a result, random number generators (RNGs) occupy a similarly important role. By their very nature, however, random numbers are difficult to fabricate, especially in the large quantities that they are often needed. In this paper I will discuss various topic...

متن کامل

Poor performance of random random number generation

Knuth [Knu98] shows that iterations a random function perform poorly on average as a random number generator and proposes a generalization in which the next value depends on two or more previous values. This note demonstrates the equally poor performance of a random instance in this more general model.

متن کامل

Thermodynamics of Random Number Generation

We analyze the thermodynamic costs of the three main approaches to generating random numbers via the recently introduced Information Processing Second Law. Given access to a specified source of randomness, a random number generator (RNG) produces samples from a desired target probability distribution. This differs from pseudorandom number generators (PRNGs) that use wholly deterministic algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Software

سال: 2012

ISSN: 1548-7660

DOI: 10.18637/jss.v050.c01